

Alternating Current

Q.No.1: The current voltage relation of a diode is given by $I = (e^{1000V/T} - 1)$ mA, where the applied voltage V is in volts and the temperature T is in Kelvin. If a student makes an error measuring ±0.01 V while measuring the current of 5 mA at 300 K, what will be the error in the value of current in mA?

- **A.** 0.5 mA
- **B.** 0.05 mA
- **C.** 0.2 mA
- **D.** 0.02 mA

Q.No.2: Time period of a simple pendulum is T inside a lift when the lift is stationary. If the lift moves upwards with an acceleration g/2, the time period of pendulum will be : **JEE 2021**

- **A.** $\sqrt{\frac{2}{3}}$ T **B.** $\sqrt{3}$ T
- C. $\sqrt{\frac{3}{2}}$

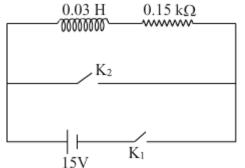
Q.No.3:

A diode detector is used to detect an amplitude modulated wave of 60% modulation by using a condenser of capacity 250 pico farad in parallel with a load resistance 100 kilo ohm. Find the maximum modulated frequency which could be detected by it.

JEE 2013

- **A.** 10.62 MHz
- **B.** 10.62 kHz
- **C.** 5.31 MHz
- **D.** 5.31 kHz

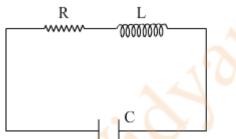
Q.No.4:


In an LCR circuit as shown below both switches are open initially. Now switch S_1 is closed, S_2 kept open. (q is charge on the capacitor and $\tau = RC$ is Capacitive time constant). Which of the following statement is correct?

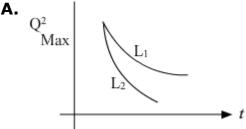
JEE 2013

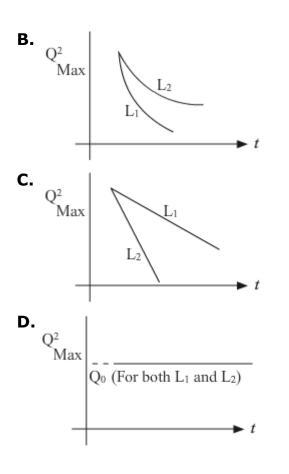
- A. Work done by the battery is half of the energy dissipated in the resistor
- **B.** At t = τ, q = CV/2
- **C.** At = t = 2τ , q = CV(1 e^{-2})

D. At
$$t = \frac{\tau}{2}$$
, $q = CV(1 - e^{-1})$



Q.No.5:


An inductor (L = 0.03 H) and a resistor (R = 0.15 k Ω) are connected in series to a battery of 15 V EMF in a circuit shown below. The key K₁ bas been kept closed for a long time. Then at t = 0, K₁ is opened and key K₂ is closed simultaneously. At t = 1 ms, the current in the circuit will be : ($e^5 \approx 150$) **JEE 2015**


- **A.** 100 mA
- **B.** 67 mA
- **C.** 6.7 mA
- **D.** 0.67 mA

Q.No.6: An LCR circuit is equivalent to a damped pendulum. In an LCR circuit the capacitor is charged to Q_0 and then connected to the *L* and *R* as shown below :

If a student plots graphs of the square of maximum charge (Q_{Max}^2) on the capacitor with time (t) for two different values L_1 and L_2 ($L_1 > L_2$) of L then which of the following represents this graph correctly? (plots are schematic and not drawn to scale) **JEE 2015**

Q.No.7: An arc lamp requires a direct current of 10 A at 80 V to function. If it is connected to a 220 V (rms), 50 Hz AC supply, the series inductor needed for it to work is close to : **JEE 2016**

- **A.** 0.08 H
- **B.** 0.044 H
- **C.** 0.065 H
- **D.** 80 H

Q.No.8: For an RLC circuit driven with voltage of amplitude v_m and frequency $\omega_0 = \frac{1}{\sqrt{LC}}$ the current exibits resonance. The quality factor, Q is given by :

JEE 2018

A. $\frac{R}{(\omega_0 C)}$ B. $\frac{CR}{\omega_0}$ C. $\frac{\omega_0 L}{R}$ D. $\frac{\omega_0 R}{L}$

Q.No.9: In an a.c. circuit, the instantaneous e.m.f. and current are given by $e = 100 \sin 30 t$

 ${
m i}=20~{
m sin}~\left(30~{
m t}-rac{\pi}{4}
ight)$

In one cycle of a.c., the average power consumed by the circuit and the wattless current are, respectively: **JEE 2018**

A.
$$\frac{50}{\sqrt{2}}$$
, 0
B. 50, 0
C. 50, 10
D. $\frac{1000}{\sqrt{2}}$, 10

Q.No.10: A power transmission line feeds input power at 2300 V to a step down transformer with its primary windings having 4000 turns. The output power is delivered at 230 V by the transformer. If the current in the primary of the transformer is 5 A and its efficiency is 90%, the output current would be:

JEE 2019

A. 50 A **B.** 45 A **C.** 35 A **D.** 25 A